2D & 3D ADVANCED TRANSMISSION ELECTRON MICROSCOPY FOR SEMICONDUCTOR CHARACTERIZATION

Vincent Delaye, Nicolas Bernier, Zineb Saghi, Guillaume Audoit, David Cooper | 3DAM Metrology Workshop | 20/04/2018

vincent.delaye@cea.fr
3DAM, TEM for FEOL SiGe Stacked Nanowire

- **STEM imaging, Electron tomography**

- **EDX, EELS-STEM for composition & doping**

- **TEM (N-PED) for strain measurements**
• **Introduction, multidimensional TEM**

• **Strain measurements in a TEM**
 - Principle & performances of N-PED
 - Application to 3DAM sample (strain and composition measurements)

• **Electron tomography**
 - Software
 - Application to 3DAM sample

• **Analytical electron tomography**

• **Summary**
INTRODUCTION, ANALYTICAL STEM TECHNIQUES, 2D & 3D

- Modern TEM capabilities:
 - Fast EELS or EDX acquisition in STEM mode
 - Composition measurement, quantification
INTRODUCTION, STRUCTURAL TEM TECHNIQUES, 2D & 3D

- Modern TEM capabilities:
 - Fast NBED pattern acquisition
 - Strain measurement, orientation & phase identification

EDS detectors

ADF detectors

Fast Camera
CCD, CMOS, pixel array detector
TRANSMISSION ELECTRON MICROSCOPES @ LETI USED IN THESE STUDIES

FEI Titan Themis 80-200 kV
XFEG gun, Monochromator, Cs Probe Corrector, Super X, Holography, GATAN Energy Filter, FEI CETA CMOS Camera

FEI Titan Ultimate 80-200-300 kV
XFEG gun, Monochromator, Cs Probe & Cs Image Correctors, Holography, GATAN Energy Filter, GATAN OneView CMOS Camera
• **Introduction, multidimensional TEM**

• **Strain measurements in a TEM**
 • Principle & performances of N-PED
 • Application to 3DAM sample (strain and composition measurements)

• **Electron tomography**
 • Software
 • Application to 3DAM sample

• **Analytical electron tomography**

• **Summary**
Why the use of precession for measuring strain?

N-PED: Higher Convergence Angle → Smaller Probe size (<1nm) → Higher Resolution
Higher Convergence Angle → Larger disks = longer edges = better detection of circle → Higher precision
Many more electron spots/disks
Why the use of precession for measuring strain?

- To avoid dynamical diffraction effects.
STRAIN MEASUREMENTS IN A TEM

- References:

Use of a standard Si/SiGe multilayer sample

Test structure with SiO$_2$/Si$_3$N$_4$ dummy gates and recessed SiGe S/D

N-PED precision ~ 0.02 – 0.05 %
Spatial resolution ~ 1-3 nm
N-PED, APPLICATION TO 3DAM SAMPLES

- **RAMAN at $\lambda = 532$nm (penetration depth of 1 μm)**
 - The frequency shift ($\Delta \omega_{\text{Si-Si}}$) for multilayer blanket corresponds to a **Ge concentration of around 31%**
 - Assumption: the multilayer is pseudomorphic, no relaxed layer

- **Can we confirm by N-PED that the blanket sample is made of biaxially strained Si$_{69}$Ge$_{31}$ layers?**

- **N-PED experiment:**
 - FIB (low kV) sample preparation
 - HRSTEM imaging to measure the layers
 - PACBED* to measure the foil thickness: 104 nm +/- 2 nm
 - N-PED acquisition and data processing (2 nm resolution)
 - EDS-STEM: SiGe quantification test / RAMAN (k-factor)

- **Mechanical simulation by finite element modelling (FEM) to estimate the strain relaxation of the FIB foil:**
 - 3D Model using COMSOL software
 - Si/SiGe layers thicknesses: HRSTEM imaging
 - FIB foil thickness: PACBED
 - Composition: RAMAN
 - 3D model projection over the foil thickness direction such that the experimental N-PED strain maps can be directly compared

* Positioned Averaged Convergent Beam Electron Diffraction

IV_IMEC_DEV01 (Blanket multilayer)
- SiGe/Si/SiGe/Si on Si substrate
N-PED, APPLICATION TO 3DAM SAMPLES

Strain maps acquired by PED are shown for the [220] and [002] directions.

3D Model using COMSOL software

3D model projection over the foil thickness direction
A good fit is obtained between PED and FEM for a **Ge content of around 31%** as measured by Raman. The Ge content measured by a quantitative EDS treatment in Esprit (k-factor) was 30 % using K line of the Ge peak, **EDS Quantification is in good agreement with RAMAN if we use K lines for both Si and Ge elements**.
N-PED, APPLICATION TO 3DAM SAMPLES

- Ge composition map (EDS-STEM)

The edges of the SiGe layers exhibit a higher intensity of the HAADF signal, which corresponds to a higher Ge content. Effect of condensation during the fin etching?

- N-PED strain measurements

Strain maps acquired by N-PED are shown for the [220] and [002] z directions.

IV_IMEC_DEV02 (Embedded Multilayer Fins)
- In between fins = SiO₂ to the top
- Surface planarized
- Arrays of fins

30 at. % of Ge in the center of the SiGe layers, 50 at. % on the sides
N-PED, APPLICATION TO 3DAM SAMPLES

- Relaxation along the Fin width [220] ε_{xx}^{PED}

The strain profile along the dotted blue line shows that the ε_{xx} strain ranges from 1 to 1.2 % in the center of the SiGe layers. This level corresponds to full relaxation of the structure along the fin width.

- Strain along the [002] direction ε_{zz}^{PED}

The strain profile along the dotted blue lines shows that the ε_{zz} strain ranges from 1.3 to 1.7 % in the center of the SiGe layers. This level of strain is:

- Higher than the one for a fully Si$_{70}$Ge$_{30}$ relaxed layer ($\varepsilon_{zz} \sim 1.15\%$),
- Lower than the one for a Si$_{70}$Ge$_{30}$ fin with no relaxation along the fin length ($\varepsilon_{zz} \sim 2.04\%$)

In between fins = SiO$_2$ to the top
- Surface planarized
- Arrays of fins
OUTLINE

• Introduction, multidimensional TEM
• Strain measurements in a TEM
 • Principle & performances of N-PED
 • Application to 3DAM sample (strain and composition measurements)
• Electron tomography
 • Software
 • Application to 3DAM sample
• Analytical electron tomography
• Summary
ELECTRON TOMOGRAPHY GUI

- **Purpose**: User-independent, fast and efficient process for 3D reconstruction
- **Electron tomography software**:
 - Get benefit from Graphics processing unit (GPU)
 - Adapted to needle-shaped samples/on-axis tomography holder

1. Automated x, z and tilt axis measurements

2. Apply & check alignment

3. Reconstruction using FBP* or SIRT** (Astra Toolbox)

- **Mix of 3 techniques**
 - cross-correlations between neighboring projections
 - common line algorithm to get a precise shift correction in the direction of the tilt axis
 - intermediate reconstructions to precisely determine the tilt axis and shift correction in the direction perpendicular to that axis

* : filtered backprojection ** : simultaneous iterative reconstruction technique
• Application to 3DAM sample

Acquisition IV_IMEC_DEV02 (Embedded Multilayer Fins)
• 30 projections from -90° to +90°
• Frame size: 2048x2048 pixels
• Frame time: 20sec
• Pixel size: 133pm
ELECTRON TOMOGRAPHY GUI

- Application to IMEC sample

Acquisition IV_IMEC_DEV02 (Embedded Multilayer Fins)
- 30 projections from -90° to +90°
- Frame size: 2048x2048 pixels
- Frame time: 20sec
- Pixel size: 133pm

Tilt series

Aligned tilt series

3D reconstruction (SIRT)
• **Introduction, multidimensional TEM**
• **Strain measurements in a TEM**
 • Principle & performances of N-PED
 • Application to 3DAM sample (strain and composition measurements)
• **Electron tomography**
 • Software
 • Application to 3DAM sample
• **Analytical electron tomography**
• **Summary**
• Challenge: monitor As dopant implantation process in a silicon Fin structure
• Experimental & EELS data processing setup:
 • Needle shaped FIB sample preparation, on-axis holder (2050 Fischione)
 • 23 HAADF STEM images & 23 fast Dual EELS maps projections (between -90° and +90°)
 • PCA denoising and extraction of O K, As L_{2,3} and Si K elemental tilt series

ANALYTICAL ELECTRON TOMOGRAPHY

HAADF STEM
23 projections x 546x512 pixels

EELS STEM ROI
23 projections x 60x90 pixels

PCA and pseudo EELS quantification

23 sets of 3 elemental maps
ANALYTICAL ELECTRON TOMOGRAPHY

- Use of the home-made software for alignment (with HAADF STEM)
- Rescaling & Zero-padding of the elemental maps
 - HAADF & EELS STEM data fusion
- Application of the shifts in x and y from the HAADF-STEM alignment
- 3D reconstruction (next slide)
ANALYTICAL ELECTRON TOMOGRAPHY

HAADF STEM image of the needle shaped specimen including the FinFET

Elemental maps of Silicon, Oxygen and Arsenic at 70°

3D SIRT reconstruction obtained with the 23 elemental projections

a) Overlay of 3D elemental volumes
b) x,y slice through the As elemental reconstruction showing As clustering
ANALYTICAL ELECTRON TOMOGRAPHY

- Microscopy & Microanalysis US conference in August
 - J. Sorrel & Z. Saghi, Correlative HAADF-STEM and EDX-STEM tomography for the 3D morphological and elemental analysis of FinFET semiconductor devices.
 - M. Jacob & Z. Saghi, Multivariate analysis and compressed sensing methods for spectroscopic electron tomography of semiconductor devices

- Batch-processing of the 3D dataset: Spectral unmixing using MSA (NMF, VCA)
- Total variation minimization algorithm (TVM) 3D reconstructions and more
- Better quality reconstruction of the As precipitates, Fin sidewall = metrology

Identification of three chemical phases in the sample: Si, SiO$_2$ and As

EDS STEM data set

SIRT/TVM comparison

Si \hspace{2cm} O \hspace{2cm} As

\[
\text{SIRT: } \min_{f} \|Af - p\|_2^2
\]

\[
\text{CS: } \min_{f} \|Af - p\|_2^2 + \|T(f)\|_1
\]
SUMMARY

• **Strain measurements**
 - N-PED used as a standard technique at LETI
 - Combine TEM local measurement with a non-destructive technique (RAMAN) and mechanical modelling

• **(Analytical) Electron tomography**
 - Software: user-independent, fast and reliable
 - Still some work to extract 3D quantitative information from reconstructed volumes
“This project has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under grant agreement No 692527. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and Netherlands, Belgium, France, Hungary, Ireland, Denmark, Israel”

Thank you for your attention

3rd 3DAM Metrology Workshop at Minatec Campus, Grenoble, March, 15th 2019

2nd European FIB Network Workshop
Grenoble, France
June 19th-20th, 2018
http://www.eu-f-n.org/2018-grenoble